Hyperon Meets Hyperdimensional Computing

Hyperon's decentralized approach to AGI represents a pivotal move, integrating
diverse Al methodologies into a cohesive, shared knowledge network. Central to this
integration is Hyperdimensional computing (HDC), utilizing high-dimensional spaces
for nuanced information representation.

There is a convergence of Hyperon and the robust geometric approach to artificial
memory afforded by Hyperdimensional computing. Hyperon's strengths are in
scaling different Al approaches into a unified decentralized web of shared
knowledge. This approach can afford many types of computing that resembles
human cognition. To support these strengths, hyperdimensional computing (HDC)
bolsters Hyperon with a unique type of learning that weaves together information in
such a way that the progress of Al can rapidly evolve in a faster, more scalable, and
flexible direction towards safe AGI.

The melding of hyperdimension computing into Hyperon two affords a unique
synergy that naturally supports emerging intelligence. Yet, there is more to be found
in thread woven between the two.

The original work of Kanerva in 1988 describes a geometric approach to artificial
memory that relies on symbolic representations in high-dimensional space [1]. In its
essence, there exists a collection of integer valued vectors which exist in many more
planes than the traditional X)Y,Z. These vectors represent information. By moving
about the many planes, or dimensions, we find that the relationship between the
vectors affords learning.

In HDC, one typical level casts their data into a collection of hypervectors. Then
logical analysis can be extracted by a few simple mathematical operations. When
hypervectors are constructed using zeros and ones, these operations typically take
the form of xor, permute, consensus sum (i.e majority), and cosine similarity [2]. There
are many flavors of HDC which take on different nuances in their mechanisms of
action and applications.

The original work of Kanerva was a type of hypervector use that functions similar to
human memory. If one hypervector contains one piece of information, such as an
image or sentence, then combining multiple hypervector has the effect of
transformation the information in a sort of holographic manor. What we mean by
this is that the information is now distributed amongst all parts of the vector. And
due to the statistical probability of the hyperdimensional space, each hypervector
has a unique trajectory through that space. In this way, information, groups of
information, and groups of groups are structured in a geometric fashion. The



distances between informations, i.e. hypervectors, describes how related the data is.
The relationships described by these difference are akin and function as associative
memory.

There are many approaches to computing with hypervectors. The robustness of this
math has been applied to computing problems such as drug discovery, seizure
detection, traffic routing, food profiling, anomaly detection, electrical load
forecasting, recommender systems, computing functions, factoring, language
recognition, real-time classification, electrical load anomalies, etc. [3-13].

There are several features of hypervector computing that are present in every
application: robustness to noise, energy efficiency, and associative learning.

Hypervectors value to Hyperon

The core value of utilizing hypervectors in Hyperon is a mechanism for representing
information in such a way that the system is memory enabled at scale.

One of Hyperon's trademarks is their, “complete, scalable, and open-source” approach
to a general artificial intelligence system. By using HDC, data can be represented in a
particular mathematical form, a hypervector, that expresses the information
contained in the data with fewer numbers. Given the data is sufficiently large, it is
transformed and compacted into the hypervector form. The resulting data packet is
often significantly smaller than the original data form.

The compression-like nature of transforming data to hypervector form effectively
processes more information per second than the original data form. There is often
very little to no loss of information if the proportions of vector size to data size and
number of compute vectors are managed appropriately. The transistors of the
computer hardware are then able to process more information - resulting in
significant reductions of volatile and nonvolatile memory usage.

In Hyperon, we can use binary hypervectors to transmit data between Al's that make
use of memory-like, contextually rich, semantic representations. The core operations
that facilitate data transformation and learning also lend themselves to efficient
computing. The composition of the basic operations (xor, permute, majority, and
cosine distance) allow Hyperon to execute data transfer in parallel. The process is
similar to auto-vectorization in which data is transformed into a compact
representation collection of serial numbers which can all be computed at once. The
result is accelerated speeds of data processing.

Since we are using binary values, the overhead of floating-point computer
architectures can be exploited via a bit-packing technique, resulting in reduced
power consumption.



Once the hypervector representations are constructed, there exist implicitly learned
structure between each vector. The associations between vectors can be directly
interpreted as learned knowledge of the data. When a program runs hypervectors for
computation, typically a type of superposition of the bit vectors is created according
the learning needs. These contextually rich, yet still compact, superposition
hypervectors can act as artificial memories. As the superposition vector gets
associated with more information hypervectors, the information becomes more and
more distributed. Through this series of majority and xor operations, the statistical
properties of the system are then used to infer the relationships between
information. This is quite similar to memories in the human brain where we associate
our current experiences with past experiences, building more complex concepts of
the world around us as we gain experience. Thus, memories (the hypervector ones)
can travel efficiently amongst decentralized Als.

In detail, Hyperon enables many Al strategies to collaborate over a decentralized
platform via the Atomspace. Some recent work indicates that by using hypervectors
as standardized representation of data, the resulting data flow can be used to bridge
different neural networks [14]. This is useful for two reasons. First, all data in this
component of Hyperon takes the same form, a n-dimensional hypervector which
follows the same compositional bitwise logic rules of all other data . This makes
transfer and gluing of Al strategies in Hyperon easier to manage - resulting in
efficiency.. Secondly, superposition hypervectors, the “contextual memory-like ones”
can take snapshots of any memory-enabled pathway through the Hyperon network.
The outcome of this approach is Hyperon can utilize a hierarchical memory structure,
allowing simultaneous and concurrent computation throughout different parts of
the system as needed for intelligence.

Another feature is that HDC math is functionally complete, almost any Al in
Hyperon's network can thus leverage the compact and efficient data packet we refer
to as hypervectors. There exists a homomorphism between any computable program’s
math and the hypervector math. Special HDC compilers help to transfer the different
mathematical dialects of Hyperon between one another, ensuring productive
collaboration.

The implications of Hyperon with hypervectors is a system which can be infused with
safeguards. There is a more philosophical perspective on safeguarding Al by embodying
the principles of neuroscience and biology. While Hyperon is not a strictly bio-inspired Al
approach, the addition of the bio-inspired HDC can be an advantage. The human brain is
quite robust to damage, adapting to change, and managing its internal resources across
a lifetime of learning. HDC, in the way in which it can be modularly enabled and
controlled by the decentralized Hyperon system, affords some essence of these same
principles and it could be a key to inner and outer alignment of safe human:AGI values.



HDC on Current Hardware

Research has demonstrated the widespread abilities of computing on current
hardware. Many components of Hyperon are able to enable an HDC-memory
component on current CPUs and GPUs. techniques such as: associative memory, few
shot learning, regression, forecasting, time-series analysis, machine learning,
unsupervised learning, memory augmented neural networks, etc. [4,15-21]. Most
relevant to Hyperon is the use of HDC for loT applications [22]. The outcome of
applying HDC to Al strategies is reduced model size, fewer training iterations needed,
reduced size in data needed to learn, reduced or eliminated pre-processing of data
[23-306].

There are some notable works in which HDC increases speech recognition with 11.9x
higher energy efficiency, 5.3 faster inference and 4.6 faster training, DNA sequencing
at 69% less energy consumption and 771 % faster, DNA pattern matching with 26x
speedup and 40x higher energy efficiency, human activity recognition was 486x
faster with 7x lower power [11,25,28]. Thus, infusing Al with HDC already holds
powerful benefits in making Al more efficient, while providing the same or better
accuracy.

Specialized Hypervector Hardware

The value of increased speed, reduced memory load, and overall power reduction is
orders of magnitude larger in custom hardware. There are recent works that
demonstrate the acceleration of this technology in academic prototypes [29,36-41].
Their results on average suggest performance gains of 642x speedup and 583x
increased energy efficiency during Al training over CPUs — 19x speedup and 107x
energy efficiency increase over GPUs. Specialized hardware reduces the
computational complexity for HDC [22].

The most critical gain opportunity that specialized hardware for HDC affords is
speed. For example, the most commonly used operation, xor, optimized on Intel's
AVX architectures computes the output of two 8,192 dimensional hypervectors in 9
microseconds. On an FPGA prototype, we've reduced this time to 2.4 microseconds.
For a speedup of 3.75x on a single operation that is used to encode a 4k image with
8.3 million pixels, xor is used approximately 25 million times, this is a huge
improvement. Many other of the core operations in HDC follow similar trends in
performance gains by directly optimizing them in circuits. Based on early
performance of a single image transformation, prototyping shows a total 28x
improvement in speed, 2.5x reduction in Watts, and 39x reduction in bytes used
when compared to CPU and 1.7 times faster than GPU implementation.



Current hardware is reliant on floating-point architectures that have overhead
related to the complexity of the core operations needed. However, in a specialized
hypervector chip, the few core operations can be By exploiting the simple core
operations of HDC, specialized hardware has been developed to best utilize the
natural efficiencies of HDC. By stripping out the overhead of complicated
architectures and functions in general purpose CPUs and floating-point SIMD GPUs,
specialized hardware for HDC allows a chip that is optimized not only for speed, but
also power efficiency.

The hierarchical nature of hypervector computing can be optimized to handle the
large vector movement at precise steps in the Hyperon network by utilizing an MIMD
structure. There is also near memory fabric that supports more efficient shuffling of
the special high-dimensional bit vectors.

There is a pseudo-quantum perspective of HDC in which the values of the
hypervectors behave in hyperdimensional planes of the superposition vector as
gubits. By back of the envelope calculations, the point at which transistors can not
get any smaller due to physical interactions of atomic particles is in 9 years. At that
point, whatever advancements in the realm of transistor computing will be in the
realm of quantum computing. The pseudo-quantum nature of HDC boards well in
the event of this hypothetical, yet likely, transition. Hyperon will be able to transition
with grace to the next major leap in computing.
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